闭链(algebrai le)的数值等价(nuberial equivalene)和同调等价(hoologial equivalene)是同一个等价关系等等。(\\www.zslxsw.com//)
这些都是已知的。
还有那些有待去挖掘的理论。
毫不夸张的说,正是这一猜想指引着现代代数几何学的发展。
不过,到这里为止,它的历史使命也该结束了。
随着他的手抬起,那支落在白板上的笔动了。
【……当i≤n/2时,ai(x)nker(l(n?2i+1))上的二次型x→(?1)i·l(r?2i)xx是正定的……】
其中x是域k上光滑投影代数簇,l是与k的特征互素的素数,hi(x,ql)是x的i阶l-adi上同调群,x与投影空间的超平面的交集是x的子代数簇。
当x是代数曲面或复代数簇时,这个猜想是已知的。
而现在他要证明的便是,在一般情形下,它同样是成立的!
时间一分一秒的过去。
白板上的算式越来越多。
坐在台下的许多人,摄取信息的速度,甚至渐渐地开始跟不上他板书的速度。
眉头紧锁、抱着双臂坐在台下的佩雷尔曼,忽然坐直了身子,直视着白板的瞳孔瞬间收缩成了一个点。
坐在他旁边不远处的舒尔茨,反应几乎一样,甚至于发出了难以置信地惊叹声。
“……利用l2上同调方法来得到完备流形紧致商的拓扑信息,将紧流形上的hodge理论推广到完备非紧流形!”
“上帝……他,他简直是个天才!”
这是阿提亚爵士于1976年发表在《数学年刊》上发表的那篇关于离散群和椭圆算子研究的论文中,提到的一个关于l2上同调理论的性质。
令人惊讶的不只是他的构思之巧妙,真正让舒尔茨震惊万分的是,他对于这些数学工具的运用,就像是呼吸一样自如。
就仿佛,那些数学工具,就是为他而生的一样。
看了目瞪口呆的舒尔茨一眼,一直都没有开口说话的佩雷尔曼,罕见地嘀咕了一句。
“……这种显而易见的事情,就算你不说大家也知道。”
附近不远处。
两位老人坐在那里,一动不动地凝视着白板。
就在陆舟成功将紧流形上的hodge理论推广到完备非紧流形的瞬间,德利涅教授忽然打破了这份沉默的默契,开口道。
“你怎么看?”
坐在他的旁边,法尔廷斯没有说话。
过了大概半分钟那么久,他摇了摇头。
“我可能需要一点时间……也许,我真的老了。”
德
本章未完,请点击"下一页"继续阅读! 第2页 / 共4页
