低温(甚至常温)下进行的核聚变反应,这种情况是针对自然界已知存在的热核聚变(恒星内部热核反应)而提出的一种概念性‘假设’,这种设想将极大的降低反应要求,只要能够在较低温度下让核外电子摆脱原子核的束缚,或者在较高温度下用高强度、高密度磁场阻挡中子或者让中子定向输出,就可以使用更普通更简单的设备产生可控冷核聚变反应,同时也使聚核反应更安全。
但是冷核聚变现在也只是存在科幻电影里的一种超前科技,目前地球上还不具备研究的条件,所以雷天唐主要关注的是国际上大家都在竟相研发的热核聚变。
“夸父,把你收集到的关于核聚变的资料都整理显示和介绍一下吧!我看看具体的情况!”结束了关于纳米机器人的讨论后他和夸父进入下一个项目——核聚变发电。
“老板,目前国际上采用的核聚变方法主要是两种,一种是采用磁约束的托卡马克装置。
托卡马克是一种利用磁约束来实现受控核聚变的环性容器。它的名字tokaak 来源于环形(toroidal)、真空室(kara)、磁(agnit)、线圈(kothka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。
托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。
虽然这种聚变反应在实验室条件下已接近于成功,但要达到工业应用还差得远。要建立托卡马克型核聚变装置,需要几千亿美元。当然了,老板你如果采用那种我无法理解的能力来制造设备的话肯定是不需要这么高的代价的。
另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束)。
就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。
这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。
原理上虽然就这么简单,但是现有的激光束或粒子束
本章未完,请点击"下一页"继续阅读! 第2页 / 共3页
